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INTRODUCTION 

Students bring to science instruction an abundance 
of  everyday, intuitive science ideas.[1–5] As they learn, 
students benefit from support to put these ideas together 
into coherent accounts of  scientific phenomena. This 
investigation captured students’ repertoire of  science ideas 
and determined the varied paths they take as they integrate 
their disconnected ideas in response to a web-based 
Genetic Inheritance unit designed to support this process. 
We studied two distinct learning conditions: critique and 
revisit. We document 6th graders’ progress in knowledge 
integration using logged responses to embedded items and 
activities in the Genetic Inheritance unit. 

Instructional activities that respect and build on students’ 

ideas lead to more durable understanding than activities 
that dismiss students’ ideas.[6–8] The Genetic Inheritance 
unit follows the knowledge integration design framework 
identified in prior research.[9] As they grapple with scientific 
challenges students explore links between both normative 
and non-normative ideas. In one study, considering 
various views helped students to distinguish and sort out 
conflicting ideas.[10] In another study, considering redundant 
ideas rather than diverse ideas encouraged students to make 
self-explanations and integrate their ideas.[11] Capturing 
learners’ ideas in response to the knowledge integration 
pedagogy as they engage in inquiry learning tells us how 
instructional activities help students connect ideas into a 
coherent understanding.[12] 

Recognizing students’ ideas and learning paths has 
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value for formative guidance in science classrooms, 
and benefits from a pedagogical framework.[13] Prior 
work has identified the impact of  unexpected paths on 
students’ performance,[14,15] studied how students deal 
with conflicting scientific phenomena,[16,17] and determined 
distinct paths for preselected groups of  students.[14] We 
used clustering analysis to identify emergent clusters 
of  students who follow distinct paths and qualitatively 
described those paths. 

In this paper, we advance the field by tracking in detail how 
students build on their repertoire of  ideas to link and sort 
out new and existing knowledge. Making visible students’ 
repertoire of  ideas and their learning paths during the 
unit clarifies how students integrate ideas. These findings 
underscore the value of  supporting multiple paths to affirm 
each student’s ideas.

Knowledge integration pedagogy
Traditional instruction often focuses on introducing 
new ideas without helping students integrate them 
with existing knowledge.[12] Understanding learners’ 
knowledge and knowledge integration is critical for 
educators to provide effective instruction that builds on 
students’ previous knowledge, connects new knowledge 
to existing knowledge, and appreciates the relevance 
of  Science, Technology, Engineering, and Mathematics 
(STEM) concepts to their everyday lives. We explore how 
students integrate ideas as they study a Web-based Inquiry 
Science Environment (WISE) unit, designed based on 
the knowledge integration pedagogy. We identify ways to 
improve knowledge integration instruction based on an 
understanding of  how students’ repertoire of  ideas and 
different learning paths contribute to their understanding.

Knowledge integration is a pedagogical framework that 
captures how students develop and refine their repertoire 
of  ideas, including how they incorporate new ideas. Ideas 
are distinct perspectives or personal interpretations that 
students gather from observations, intuitions, anecdotes, 
films, experts, or scientific evidence in contexts such as 
home, school, or cultural communities.[12] Throughout a unit 
of  instruction, students may maintain their prior ideas, mix 
their prior ideas with new normative ideas, or link ideas to 
form cohesive integrated knowledge. Students’ knowledge 
integration involves making comparisons, distinguishing 
between intuitive and newly added scientific ideas, finding 
links between concepts, and clarifying uncertainties 
with evidence.[12] Students start with a unique repertoire 
of  ideas. Supporting them to build on their own ideas 
facilitates the integration of  their initial ideas with new ideas 
encountered in instruction. Typical instruction often fails 
to help students integrate new and existing ideas, instead 
focusing solely on introducing new ideas. Consequently, 
students may isolate new ideas within the context of  the 
classroom, failing to apply them broadly. Students must act 
as cognitive economists, selecting when and where to focus 

their attention and resolve conflicts between ideas.[18] This 
is a common issue in STEM classrooms when students fail 
to understand the relevance or importance of  connecting 
their ideas. Instruction that emphasizes learning through 
knowledge integration empowers students to develop 
scientific conceptual understanding by building on their 
own everyday intuitive science ideas.

This detailed study of  students’ multiple learning paths as 
they engage in knowledge integration instruction offers 
educators insight into the ways that instruction supports 
each student to progress. By analyzing how students’ ideas 
develop as they follow sequences of  instructional activities, 
we illustrate the multiple paths students take through the 
same activities as well as the distinct impacts of  alternative 
instructional conditions. As students’ ideas emerge through 
their engagement with a science unit, their learning path 
may differ from the teacher’s expectations. 

We illustrate that learning paths build on students’ initial, 
unique repertoire of  ideas. Rather than seeking a single 
learning path, we document that students follow distinct 
pathways both within the same set of  activities and across 
different instructional conditions.

Revisiting versus critiquing 
We examine the effectiveness of  critique activities and 
revisiting activities in shaping students’ repertoire of  
ideas.[19,3] Guiding students to revisit an interactive 
model is correlated with learning gains.[20] In addition, 
critique activities have enhanced the revision of  
explanations.[21] The use of  a critique-based strategy 
may encourage students to recognize their own non-
normative or missing ideas.[19] We found both critique 
and revisit guidance improved students’ explanations 
in the post-test.[3] In this study, we examine students’ 
scientific understanding, knowledge integration, and 
learning paths under two randomly assigned conditions: 
critique condition and revisit condition. We anticipate 
that students may have different learning paths based on 
the instructional activities in the revisiting and critiquing 
conditions.

Research questions
1.  What progress in integrating ideas do students make 

while studying the web-based Genetic Inheritance 
unit in the critique and revisit conditions?

2.  What distinct learning paths do students take as they 
study the web-based Genetic Inheritance unit in the 
critique and revisit conditions?

DATA SOURCES AND METHODS

Participants and materials
A total of  243 sixth graders from two schools, taught by 
three middle school science teachers studied the WISE 
Genetic Inheritance unit. Students were randomly assigned 
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Figure 1. Interactive model used in Web-based Inquiry Science Environment Genetic Inheritance unit.

the revisit condition or critique condition (critiquing 
fictitious claims about the science). 

Design of Genetic Inheritance unit
The WISE unit (https://wise.berkeley.edu/) was developed 
following the knowledge integration pedagogy.[9] Students 
started by exploring the concepts of  alleles and genes by 
interacting with images of  chromosomes and DNA. The 
unit elicited student ideas by asking students to make a 
prediction. Students discovered new scientific ideas by 
manipulating an interactive model for the Punnett square 
(Figure 1). They distinguished between their own and the 
ideas they discovered in either critique or revisit activities. 
Students reflected on their ideas as they revised their 
responses to the Punnett square item and the siblings’ 
inherited traits item. Each condition had unique questions.

Revisit condition
Students revisited the Punnett model and DNA structure to 
respond to questions about Punnett squares (Supplemental 
table 1):

1.  Punnett square: When the Punnett square is filled 
out, what do the four boxes represent? Explain how 
you would use a Punnett square to figure out the 

probability of  getting a certain genotype.
2.  DNA from parents: How much DNA do you get 

from each of  your parents? Select all answers that 
are true. (Multiple choice: [A] More from one parent, 
depending on which parent you look more like. [B] 
One of  each pair of  chromosomes from each parent. 
[C] You get DNA for some traits from your mother 
and DNA for other traits from your father. [D] You 
get an equal amount from both parents, half  from 
each.)

3.  Use Punnett square to distinguish siblings: How could 
you use a Punnett square to explain why siblings look 
different from each other?

Critique condition
Students critiqued responses from a fictitious student 
about the Punnett square and siblings model. We used 
fictitious students because students are often reluctant to 
criticize classmates.[19] They indicated whether the response 
was correct, incorrect, or vague. They explained how to 
make it more accurate. The claims they evaluated were 
(Supplemental table 2):

1.  a. Punnett square: “Two of  their children will have 
free earlobes.” b. Punnett square: “Their fourth child 
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will have attached earlobes.”
2.  DNA from parents: “Siblings get different amounts 

of  DNA from each parent, so they don’t look exactly 
the same.”

3.  Genes: “Some kids get genes from one parent, and 
some get their genes from the other parent.” 

Pre/post and midpoint assessments
We analyzed student performance on the Punnett 
square item and siblings item at three time points using 
a knowledge integration rubric to assess overall progress 
in knowledge integration (Supplemental table 1 and 2). 
The pretest items were identical to the post-test items 
(Supplemental table 1 and 2). The pretest and post-test 
items were:

1.  Siblings item: If  you have siblings, you might look 
very similar to each other, but not exactly the same 
(unless you’re an identical twin). Why do you think 
siblings look similar to each other, but not exactly the 
same?

2.  Punnett square item: Explain how you would use a 
Punnett square to figure out the probability of  getting 
a certain genotype.

Logs of student work to track ideas
We analyzed the logs of  student responses to multiple 
choice items and explanation items across the activities in 
each condition to track the students’ repertoire of  ideas. 
Students’ ideas were coded based on the task, domain 
knowledge, and knowledge integration. 

Coding
Students’ open responses to the questions were coded 
with a knowledge integration rubric (Supplemental table 
3). Multiple choice and short responses were coded with 
the rubric in Supplemental table 4. 

Students’ responses were coded based on a combination 
of  categories. Each code (e.g., Explore_Gene & Allele_
Partial) included the following categories: knowledge 
integration task (explore, predict, discover, distinguish, 
and reflect), domain knowledge (gene and allele, Punnett, 
Punnett quantity, Punnett order, DNA amount, gene, 
genotype, probability, and siblings’ traits), short answer/
multiple choice score (correct, incorrect), or knowledge 
integration score (off  task = 1; non-normative/irrelevant 
terminology use = 2; partial = 3; 1 valid link = 4; 2 or 
more valid links = 5). 

The rubric and the coding scheme were discussed among 
two raters. One of  the raters had experience using the 
knowledge integration rubric in several studies. Revisions 
were made to the coding scheme. The raters coded 100 
student responses from the explanation items. Inter-rater 
reliability between the coders was near perfect (κ = 0.81). 

Analysis of code sequences
To identify learning paths, we developed an analytical 
procedure (Figure 2) that consisted of: 

1.  Strings of  ideas, each string representing students’ 
set of  ideas in response to the unit’s items.

2.  Levenshtein edit distance of  students’ strings of  ideas.
3.  K-means clustering based on Levenshtein edit 

distance.
4.  Generalized median string.

Levenshtein edit distances
We coded students’ strings/sequence of  ideas for the 
questions in each condition. We compared the strings 
using the Levenshtein edit distance metric. This involves 
transforming one string of  ideas to another by using a 
minimum number of  insertions, deletions, or substitutions 
to measure the similarity of  the strings. This method is 
commonly used in linguistics[22] and bioinformatics[23] to 
identify similar strings. For example, in bioinformatics, 
DNA sequencing involves identifying similar strings of  
elements.

K-means clustering
We used K-means clustering based on Levenshtein edit 
distance to form clusters into groups with high inter-
cluster similarity. K-means clustering creates random initial 
centroids to define clusters. Then, the centroids are updated 
iteratively until the centroids of  the new clusters reach a 
settled status. To determine the ideal set of  clusters, we 
used silhouette coefficient clustering.[24]

The number of clusters
To determine the optimal number of  clusters we used the 
silhouette coefficient, an unsupervised machine learning 
technique that involves calculating the average distance for 
each and every point with respect to every other point in 
the same cluster to establish the intra-cluster distance. Then 
the silhouette coefficient calculates the average distance 
for each and every point with respect to every other point 
in the nearest cluster. To distinguish between clusters the 
average distance between points within a cluster must be 
less than the average distance between the points and the 
other clusters. The silhouette coefficient (k) ranges from 
–1 to +1. A high value towards the positive sign indicates 
that the data point is well matched to its own cluster and 
poorly matched to its neighboring cluster.

Generalized median string
To identify the path represented by a cluster, we used the 
generalized median string approach.[25] The generalized 
median string represents the minimum sum of  distances 
from every string of  a set of  strings.[26] Gonzalez-Rubio 
and Casacuberta have used the generalized median string 
as a method for determining the consensus translation of  a 
target language (e.g., English) by comparing the translation 
of  the same text in different languages (e.g., Spanish-
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English; French-English; German-English).[27] The median 
sequence is measured using the edit distance between the 
sequences. We used a generalized median string to identify 
the median path followed by students in each cluster. 

RESULTS

The unit was implemented successfully. All teachers were 
able to run the software and monitor student progress. 

Progress in knowledge integration of Genetic 
Inheritance
To assess overall progress in knowledge integration, we 
analyzed two embedded items that were administered at 

three time points: Pretest (near the beginning), post-test (at 
the end of  the unit), and after conditions (after students 
completed the conditions). Table 1 shows the descriptive 
statistics for the Punnett square and siblings’ traits items 
in the pretest and post-test. Students in both conditions 
made progress in knowledge integration on the Punnett 
square item from pretest to post-test. The two-way analysis 
of  variance (ANOVA) shows a significant mean difference 
between the beginning and end of  the unit (F [1, 482] = 9.89, 
P = 0.001). The effect for condition (revisit and critique) was 
not significant (F [1, 452] = 1.54, P = 0.21).

Overall, in both conditions, students did not make progress 
in their revision of  the siblings item from pretest to 

Figure 2. String analysis model to identify learning paths.

Table 1: Descriptive statistics for Punnett square items and siblings’ traits items
Condition n Pretest Punnett 

square
Post-test Punnett 
square

Pretest siblings traits Post-test siblings 
traits

Revisit 115 2.81 ± 1.04 3.06 ± 0.84 2.66 ± 0.72 2.76 ± 0.73

Critique 128 2.67 ± 1.15 2.98 ± 0.85 2.70 ± 0.64 2.66 ± 0.70

Data was expressed as the mean ± standard deviations.
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post-test. The two-way ANOVA revealed no significant 
differences (overall, F [1, 482] = 0.20, P = 0.65; by 
condition, F [1, 452] = 0.22, P = 0.64). However, there 
was a significant mean difference between the pretest 
siblings item and the midpoint siblings item, administered 
right after the conditions (F [1, 482] = 5.06, P = 0.02). 
Thus, right after being prompted to revisit the use of  the 
Punnett square model for explaining the difference in 
siblings’ traits, students made progress. This shows the 
advantage of  combining understanding of  the Punnett 
square with the requirements of  the siblings question. For 
this question, the mean difference between the revisit and 
critique conditions was not significant (F [1, 482] = 3.00, 
P = 0.08). There was no effect on the conditions of  any 
assessment. For both Punnett square and siblings, students 
gained insights either at the midpoint or at the end of  the 
unit. For the siblings item, the progress was not sustained 
from the pretest to post-test. The critique activities were 
quite difficult for students, 39% of  all the critique responses 
were correct (Table 2), suggesting that the condition did 
not achieve the goal of  promoting the ability to critique. 

Cluster analysis
K-means cluster analysis was used to identify the clusters 
based on their edit distances. Generalized median string 
analysis was used to identify the representative string for 
each cluster.

Revisit condition
Figure 3 shows the Silhouette scores against the values of  
clusters. Among different clusters, k = 4 has the highest 
silhouette score average while k = 9 has the lowest 
silhouette score average (Figure 3). Among different 
clusters k = 4 has the least negative values. Figure 4 shows 
that k = 4 has the least negative values while k = 9 has 
the most negative values. Thus, we selected k = 4 as our 
optimal number of  clusters.

After testing different numbers of  clusters, four clusters 
showed more inter-cluster similarity and intra-cluster 
dissimilarity (Figure 5). Figure 6 shows the median 
strings (the most representative strings of  ideas) for the 
revisit condition clusters. Each of  the four identified 
learning paths culminated in either a normative partial 
link (knowledge integration score of  3) or an irrelevant 
terminology use (knowledge integration score of  2). 

There are four clusters in Figure 6, each of  which shows 
students’ sequences of  ideas when exploring, eliciting, 
discovering, distinguishing, and reflecting. Each cluster 
contains nine boxes, each of  which represents a step in 
students’ learning path. What makes each cluster distinct 
is students’ progress in making discoveries, distinguishing 
ideas, and reflecting on their ideas. 

We categorized Cluster 1 as an isolated links group 
because they provided distanced normative ideas without 
elaborating on those ideas. From the domain knowledge 
perspective, we categorized the students in Cluster 1 as 
probability-centric because they made discoveries about 
the probability in the Punnett square (step 6 and step 8 in 
Figure 6). This cluster’s discovery about the probability of  
offspring traits was evident when using the Punnett square 
(step 6 in Figure 6) and making statements such as: “You 
have 4 squares, each one is 1/4 chance. If  the letters are the 
exact same, like Ee and eE, it is a total of  a 50% chance”. 
In one of  the proceeding steps (step 8 in Figure 6), these 
students were able to use the knowledge they gained about 
the probability in Punnett square to state how they can use 
a Punnett square to explain why siblings look different. For 
example, student A stated: “The probability is different for 
siblings each time”. However, in later steps, they seemed 
confused or unsure about the difference between “genes” 
and “alleles”. Students mostly used expressions such as 
“the combination of  genes” instead of  “the combination 
of  alleles” to explain the inheritance of  traits. For example, 
in step 9 (Figure 6), student A stated: “The genes that 
your mom and your dad (give) are not the same and the 
Punnett square might be different”. Teachers should build 
on students’ partial understanding of  probability in Punnett 
square and help them link this understanding to the causal 
indicators of  Genetic Inheritance.

We categorized Cluster 2 as a partial links group because 
they made more partial links in their sequences of  
ideas. They made a partial link about probability while 
discovering the Punnett square (step 3 in Figure 6), and 

Table 2: Accuracy of critique responses in critique condi-
tion (n = 128)
Item Accurate responses

Count Percentage

Critique item 1 29 23%

Critique item 2 66 51%

Critique item 3 28 22%

Critique item 4 78 61%

Average - 39% Figure 3. Silhouette scores for clusters in the revisit condition.
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Figure 5. K-means clusters for the revisit condition.

Figure 4. Graphical Silhouette Coefficient clustering for the revisit condition. The “Cluster label” represents the cluster to which a group of data points belong. 
The data points are represented by the vertical bars in the Silhouette plots, and each bar’s color corresponds to the cluster to which a set of data points belong. 
The position of the bar represents the Silhouette coefficient value for a group of data points, with higher values indicating that the data points are well-matched 
to their own cluster and poorly matched to neighboring clusters.

in the proceeding step, they made a partial link about 
genotypes (step 5 in Figure 6). For example, in step 5, 
student B stated: “They (Punnett square boxes) represent 
the possible genotypes”. Furthermore, they provided a 
partial link about probability in step 8 where they were 
asked to state how they can use a Punnett square to explain 
why siblings look different. From the domain knowledge 
perspective, we categorized Cluster 2 as Punnett-centric 
because they were able to improve their knowledge about 
the Punnett square. Their sequences of  ideas in step 3 
(partial probability), step 4 (correct Punnett exercise), 
and step 5 (partial genotype) enabled them to improve 
their partial link in the Punnett square (step 3) to a valid 
link in their reflection on the Punnett square (step 6). For 
example, one student B stated: “You put the alleles of  the 
parent and multiply them”. They also reflected on their 
Punnett square knowledge with a normative valid link 
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statement: “If  a certain genotype shows up more than 
once the probability is more”. Later in step 8, when they 
were asked to state how they could use a Punnett square to 
explain why siblings look different, they provided a partial 
link about probability without referring to genotypes. For 
example, student B stated: “The Punnett square shows the 
different types of  probabilities of  different traits for your 
sibling. So, it can explain why siblings look different from 
each other”. What they struggled with in their learning path 
was explaining the causal indicators of  genetic variation. 
For example, when they were asked “How much DNA 
do you get from each parent? Select all the answers that 
are true” (step 7), student B responded: “(you get) More 
(DNA) from one parent, depending on which parent you 
look more like”. This idea reappeared in the final step (step 

Figure 6. Revisit: K-means clusters and generalized median strings. The set of boxes/steps under each cluster shows the most representative string of ideas 
for that cluster. Each box represents the codes for students’ responses to the unit questions. The number in each box matches the number of the questions in 
Supplemental table 1.

9) where students were asked “Why do you think siblings 
look similar to each other, but not exactly the same?” For 
example, in step 9, student B stated: “some siblings get 
more DNA for the mother and some get more DNA from 
the father”. Teachers should build on students’ ideas about 
genotype and probability, and help them link those ideas 
to the causal indicator of  genetic material. If  students’ 
express ideas about where genetic material is coming from, 
teachers can help them develop an understanding of  how 
variation of  traits is possible between siblings.

We categorized Cluster 3 as a valid links group because 
they made a valid link in the discovery of  the Punnett 
square (step 3) and provided a valid link when reflecting 
on their discovery of  the Punnett square (step 6). For 
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example, in step 3, student C stated: “You put the alleles 
of  the parent and multiply them” and in step 6 stated: 
“Well, you would use the Punnett square by putting both 
of  your parent’s genotypes on each side and then match 
up the letters like a multiplication table”. From the domain 
knowledge perspective, we categorized students in Cluster 
3 as DNA-structure-centric because they were able to 
understand that “you get an equal amount from both 
parents, half  from each; and you get one of  each pair of  
chromosomes from each parent” and were able to use 
this knowledge in the final step “(siblings look similar to 
each other, but not exactly the same) Because they gather 
different traits from different sides of  their family in a 
random order and a random condition”. This statement 
shows that students understand randomness yet they can 
improve on their statement by explaining how alleles affect 
inherited traits. This struggle is detected in step 5 where 
they provided an irrelevant use of  terminology as stated 
“(when the Punnett square is filled out, the four boxes 
represent) The genes of  the offspring”. Teachers should 
build on students’ understanding of  the Punnett square 
and DNA structure to help them provide explanations 
that include statements about the probability of  different 
combinations of  genotypes/alleles as the causal indicators 
for the variation of  traits in siblings.

We categorized Cluster 4 as an integrated links group 
because they were able to integrate ideas in one of  the 
final steps (step 8) where they were asked to state how they 
would use the Punnett square to explain why siblings look 
different. They consistently made discoveries, distinguished 
ideas, and gradually made progress in their knowledge 
integration. From the domain knowledge perspective, 
we categorized Cluster 4 as allele-centric. They made 
discoveries about the probability in the Punnett square 
(step 3 and step 6), distinguished ideas about genotype 
(step 4), and distinguished ideas about the DNA structure. 
These sequences of  ideas from step 3 to step 7 enabled 
them to provide a valid link in step 8. In step 8, student 
D stated: “I could use a Punnett square to explain why 
siblings look different from each other by showing that the 
probability that some offspring get some kind of  genotype 
could be different from what the other sibling gets”. They 
understood the Punnett square and the terminologies for 
Genetic Inheritance, all of  which enabled them to develop 
an understanding of  allele interaction. In step 9, they stated 
a partial causal link: “Siblings have some of  the same alleles, 
but some different”. If  these students continue to do new 
activities, they will consolidate their explanation in step 9 
because they already provided a valid link in step 8. 

Critique condition
Figure 7 shows the Silhouette scores for values of  clusters. 
Among these clusters, k = 3 has the highest silhouette 
score average and k = 9 has the lowest silhouette score 
average. Among different clusters k = 3 has the least 
negative values. Figure 8 shows that k = 3 has the least 

negative values while k = 9 has the most negative values. 
Thus, we selected k = 3 as our optimal number of  clusters.

After testing different numbers of  clusters, 3 clusters 
showed more inter-cluster similarity (Figure 9). Figure 10 
shows the median strings for the critique condition clusters. 
Each of  the three identified learning paths culminated 
in either a normative partial link (knowledge integration 
score of  3) or an incorrect terminology use (knowledge 
integration score of  2). 

The clusters in Figure 10 show students’ sequences of  ideas 
when exploring, eliciting, discovering, distinguishing, and 
reflecting. What makes each cluster distinct is students’ 
progress in making discoveries, distinguishing ideas, and 
reflecting on their ideas. 

We categorized Cluster 1 as an isolated links group 
because they provided distanced normative ideas in steps 
1, 4, and 7. From the domain knowledge perspective, we 
categorized the students in Cluster 1 as probability-centric 
because they improved their understanding of  the Punnett 
square from irrelevant terminology used in step 3 (Figure 
10) to the use of  partial links about probability in step 
7 (Figure 10). In step 3, they struggled to discover and 
explain the probability of  getting a certain genotype in 
Punnett square. As they moved to step 4, they successfully 
discovered how to work with the Punnett square. Although 
they struggled to critique hypothetical ideas about the 
Punnett square in steps 5 and 6, they finally showed an 
improvement in their reflection on the Punnett square 
discovery in step 7. For example, a student reflected on 
the Punnett square discoveries by providing a partial 
link about probability: “You look what traits you inherit 
and your probability of  inheriting that trait”. We suggest 
teachers build on students’ partial understanding of  genes 
(step 1) and their understanding of  probability in Punnett 
squares (step 7). For example, teachers may ask: “Why 
are genes represented with two letters in the Punnett 
square?” and “How do siblings get different copies of  

Figure 7. Silhouette scores for clusters in critique condition.
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Figure 8. Graphical Silhouette Coefficient clustering for the critique condition. The “Cluster label” represents the cluster to which a group of data points belong. 
The data points are represented by the vertical bars in the Silhouette plots, and each bar’s color corresponds to the cluster to which a set of data points belong. 
The position of the bar represents the silhouette coefficient value for a group of data points, with higher values indicating that the data points are well-matched 
to their own cluster and poorly matched to neighboring clusters. 

Figure 9. K-means clusters for the critique condition.

chromosomes from their parents?” Next, teachers can 
help students connect the inheritance of  different traits to 
random inheritance of  DNA and random combination of  
genotypes. Furthermore, they can help students connect 
back to the Punnett square model to determine that alleles 
are responsible for the traits and use this to explain siblings’ 
differences. 

We categorized Cluster 2 as a partial links group. They 
made partial links when discovering the Punnett square 
(step 3) and critiquing ideas about genes (step 9). From 
the domain knowledge perspective, we categorized Cluster 
2 as Punnett-centric because they developed procedural 
knowledge of  how to create the Punnett square. They 
improved their partial understanding of  the Punnett square 
in step 3 to a valid link in step 7. For example, student E 
stated “(in Punnett square) The probability is that you will 
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get attached earlobes” in step 3 and stated “(in Punnett 
square) You can check if  your children (or something 
else) will get a certain genotype because it will predict it” 
in step 7. Although students improved in their procedural 
knowledge about the Punnett square from step 3 to 7, they 
struggled to critique a presented hypothetical idea about 
the quantity of  offspring in Punnett square boxes (step 5). 
For example, student E stated: “...when the E or e from the 
mother and...the father combine, three children will have 
free earlobes, and one will have attached earlobes.” These 
students did not realize that the Punnett square does not 

show the number of  offspring but rather shows random 
combinations of  genotypes. As they proceeded to the next 
step, they succeeded in critiquing the hypothetical idea 
about the order of  offspring in the Punnett square (step 
6). For example, in response to the hypothetical idea that 
“Their fourth child will have attached earlobes”, student 
E stated: “It does not have to be the fourth child it could 
be in any order”. This cluster’s fragmented ideas about 
the randomness of  genotype combinations in the Punnett 
square (step 5) was carried forward to step 8. In step 8, this 
cluster of  students showed fragmented ideas connected 

Figure 10. Critique: K-means clusters and generalized median strings. The set of boxes/steps under each cluster shows the most representative string of ideas 
for that cluster. Each box represents the codes for students’ responses to the unit questions. The number in each box matches the number of the questions in 
Supplemental table 2.
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to the DNA structure and the random assortment of  
chromosomes. Since this cluster’s full discovery of  the 
Punnett square was not accompanied with accurate 
critique of  hypothetical ideas about DNA structure, they 
struggled to integrate ideas in their reflection on siblings’ 
inherited traits (step 10). Teachers should build on students’ 
knowledge of  the Punnett square to help them connect the 
procedure of  finding all possible combinations of  parental 
alleles to understanding randomness in those combinations 
and inheritance of  chromosomes from each parent.

We categorized Cluster 3 as an integrated links group. 
They consistently made discoveries and distinguished ideas. 
From the domain knowledge perspective, we categorized 
Cluster 4 as allele-centric because they were able to 
integrate the idea of  different combinations of  alleles with 
the idea of  siblings’ inherited traits. For example, in step 
9, a student stated: “Different combinations of  alleles in 
the Punnett square affect siblings’ inherited traits”. This 
cluster of  students developed partial and valid links across 
different areas of  the unit. They also showed Punnett 
square mastery and maximum success in critiquing. Similar 
to the other clusters, Cluster 3 shows that continuous 
partial links in distinguishing ideas and full discovery of  
the Punnett square (steps 3–8 in Figure 10) led to more 
successful critiques and reflections.

DISCUSSION

We explored students’ scientific understanding and 
knowledge integration in two instructional conditions: 
Critique condition and revisit condition. Our statistical 
analysis shows when students were asked to reflect on 
“Why siblings look similar to each other, but not exactly 
the same?” The majority of  them did not integrate the new 
ideas that they gained from the discovery of  the Punnett 
square activity. This shows that students did not apply the 
ideas from the Punnett square functions to the context of  
siblings’ inherited traits in their reflections. The challenges 
students encountered when reflecting on their ideas are 
consistent with the research findings on effective revising. 
Effective revising is found to be a challenging process for 
middle school students.[28,29] Students are more likely to 
use evidence to confirm rather than revise their ideas.[29] 
It is found that novice writers revise their responses at a 
surface level, in which writing mechanics are given greater 
attention over the content.[28] An effective revision requires 
identifying the deficiencies in the initial writing, and then, 
resolving the issues in the revision.[30,31]

Our statistical analysis shows that being exposed to 
revisiting questions that combine different contexts may 
help students to focus their knowledge integration. When 
students in the revisit condition were asked to revisit 
their response to the Punnett square as they explained 
why siblings look similar to each other (step 8 in Figure 
6), they showed a detectable change in their knowledge 

integration. This suggests that repeated exposure to a 
model interconnected with different contexts may promote 
knowledge integration. Improvements in revisions were 
found when students were prompted with a strategy for 
revising.[32–34]

In this paper, we used cluster analysis to illustrate the 
multiple paths students take through the same activities 
as well as the distinct impacts of  alternative instructional 
conditions. The identified learning paths were not robust 
in the sense that they apply across the two conditions. The 
learning paths were somewhat dependent on the nature 
of  the conditions. Students following some of  the paths 
were less successful. We observed isolated progress in 
some paths and more integrated progress in other paths. 
The distinct learning paths of  each cluster of  students 
inform us on how to build upon students’ ideas to guide 
them on those paths.

Distinguishing ideas
In inquiry learning, a coherent understanding is achieved 
when students engage in the process of  distinguishing 
ideas.[12] Some students may go down the learning path 
without normatively distinguishing ideas (Cluster 1 in 
Figure 10) or with normatively isolated distinguishing 
ideas (Cluster 2 in Figure 10). For example, Cluster 2 
of  the critique condition discontinuously distinguished 
an idea about the order of  boxes in the Punnett square 
(step 6) and the genes inherited from parents (step 9) 
throughout their learning path. Although this cluster 
made a full discovery of  the Punnett square, they may 
need more interactive models and prompts to distinguish 
the non-normative connection of  ideas in their repertoire 
from the scientifically valid connection of  ideas. When 
students such as Cluster 1 in Figure 10 do not engage 
in the process of  distinguishing ideas because they lack 
sufficient normative ideas to build on, we may need to 
introduce pivotal questions that are relevant to students’ 
non-normative ideas. To help this cluster, teachers need 
to use students’ single isolated ideas and present those 
ideas with pivotal cases that address their non-normative 
ideas. It is argued that introducing pivotal cases may 
promote recognizing, rethinking, and restructuring of  
repertoire of  ideas.[18]

When students make continuous discoveries or 
fragmented discoveries, the presence or absence of  some 
distinguishing ideas impacts their knowledge integration 
in their final reflection. From the different learning paths, 
we learned that those who made full discovery about the 
Punnett square without distinguishing ideas about DNA 
structure, Punnett order, or Punnett quantity struggled 
with integrating ideas when making their final reflection 
about the inheritance of  siblings’ traits. For example, in 
both Cluster 2 of  the revisit (Figure 6) and Cluster 2 of  
the critique condition (Figure 10), students continuously 
stated concepts correctly when they described the 
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procedure of  developing the model of  a Punnett square. 
However, their struggle to distinguish ideas about the 
DNA structure shows that, despite making full discoveries 
about the Punnett square model in the preceding steps, 
they struggled to reflect on the inheritance of  siblings’ 
traits in the final step of  their learning path. On the other 
hand, the sequences of  ideas in Cluster 3 and Cluster 
4 of  the revisit (Figure 6) and Cluster 3 of  the critique 
condition (Figure 10) show that if  students make a 
continuous discovery of  the Punnett square model and 
proceed to successfully distinguish ideas about the DNA 
structure, they can provide a partial link in their final 
reflection on the inheritance of  siblings’ traits. 

These findings show students struggle to determine the 
most constructive ideas that could be used as links to 
form a coherent integration. They struggle to distinguish 
among their own diverse ideas and determine the ones 
they can build on. It is found that the distinguishing step 
requires the most support from students because students 
need to determine which ideas from their repertoire of  
ideas are most constructive for developing an integrated 
understanding.[35] The distinct repertoire of  ideas in each 
learning path informs us of  the need to use different 
instructions for supporting the process of  distinguishing 
and reconciling conflicting ideas.

Sustaining links
The cluster of  students who have been able to integrate 
valid knowledge for some concepts independent of  the 
other concepts may need prompts to sustain those links 
across different concepts. For example, although the 
main concepts of  alleles, genotypes, and probability were 
articulated in relation to the Punnett square, they were 
not used meaningfully in relation to the siblings’ inherited 
traits. Depending on the distinct learning path of  each 
cluster of  students, we need to provide prompts that help 
connect the corresponding elements across contexts. 

Sustaining invalid ideas
After developing partial or valid links, some students 
abandoned those links when they had to distinguish 
between different concepts (genotypes, DNA structure, 
alleles, genes, and probability and randomness in Punnett 
square) or reflect on those concepts in a more generalized 
context. This shows that students may hold onto their 
incorrect conceptions despite adding partial or new valid 
links to their repertoire of  ideas. For example, Cluster 2 
of  the critique condition provided two valid links in their 
learning path, yet they were not able to integrate those 
valid links of  gene and allele (step 1 in Figure 10) and 
Punnett square (step 7 in Figure 10) to provide an accurate 
concept in their following explanation in steps 8 and 10. 

Students who have been able to integrate valid knowledge 
for each concept independent of  the other concepts may 
need prompts to find the link between different concepts 

and to transfer their knowledge across different 
contexts. For example, although the main concepts of  
alleles, genotypes, and probability were used in relation 
to the Punnett square, they were not used correctly in 
relation to the siblings’ inherited traits. We may need 
prompts that guide students to find the corresponding 
elements across contexts. Puntambekar et al. suggest 
that students need guidance to know what features 
are needed to be used to integrate ideas with their 
designed models.[36] Johnson et al. found that abstract 
prompts lead to deeper understanding if  accompanied 
with prompts that focus students’ attention on the 
corresponding elements across multiple text or diagram 
representations. [37] The authors suggest the use of  
self-monitoring prompts to promote more knowledge 
integration.[38] They studied the use of  activity prompts 
in comparison to the use of  self-monitoring prompts. 
The activity prompts were designed to elicit direct 
scientific knowledge while the self-monitoring prompts 
were designed to promote planning and reflection. They 
found that when students regularly articulate their ideas 
in response to the self-monitoring prompts, they learn 
to engage in autonomous reflection and knowledge 
integration. 

Building on a partial link
The articulation of  a partial link for distinguishing among 
concepts, may not be enough to scientifically improve 
students’ repertoire of  ideas. The partial understanding 
of  the concepts (step 1 in Figure 6 and 10) was followed 
by either an incorrect concept use or a partial idea about 
why siblings look similar but not exactly the same (step 
2 in Figure 6 and 10). For example, after stating a partial 
link about the difference between genes and alleles, a 
student predicted why siblings look similar but not exactly 
the same by applying an irrelevant terminology: “They 
got different genes from their parents”. Another student 
did not mention the main concepts: “Because you come 
from the same parents but you take different things from 
both parents”. 

Students who formed scattered partial links in their 
learning path but did not proceed to make at least one 
partial link in distinguishing ideas were found to be 
struggling the most in their learning path. For example, 
Cluster 1 of  the revisit and critique condition show that 
students were able to provide partial links in their learning 
path (steps 1, 4, and 6 in Figure 6 and steps 1, 4, and 7 
in Figure 10) but were not able to follow with at least 
one partial distinguishing idea. Although these clusters 
possessed some normative partial links in their exploration 
and discovery processes, those partial links were scattered 
throughout the learning path. Consequently, students 
were not able to create clear links between their ideas. 
Thus, our findings reveal that when students’ repertoire 
of  ideas is expanded with some disconnected partial 
links without any distinguishing ideas, those partial links 
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may not be used in the knowledge integration process. 
Scholars have proposed that individuals may develop an 
understanding of  an idea when they encounter it, but 
they may isolate or fail to recall it if  they do not link that 
idea to related situations.[39,40]

Effective prompts
We provided exploring, eliciting, discovery, distinguishing 
(Revisiting vs. Critiquing), and reflecting prompts. By 
comparing students’ sequences of  ideas in each cluster, 
we learned that some students may need to make 
more discoveries (Cluster 1 in the revisit and critique 
conditions) and some may need to distinguish more ideas 
(e.g., Cluster 2 in the revisit and critique conditions). Some 
students were pushed ahead to distinguish ideas while they 
had not made full discoveries yet and some were pushed 
ahead to reflect on ideas while they had not distinguished 
some ideas. Thus, the clusters help us understand where 
students are in the learning process and what prompts 
are needed for future studies. 

Our findings indicate that distinguishing activities 
will elicit students’ gaps in their repertoire of  ideas. 
Critiquing activities and revisiting activities are both 
found to be effective for improving students’ scientific 
understanding,[3,21] especially for students with low prior 
knowledge.[3] Educators and researchers need to use 
the elicited information to provide more distinguishing 
activities, new scientific ideas, or more reflective activities 
for students so that they can integrate more knowledge in 
their final reflection.[41,42] The learning paths we identified 
and the methods we used in this study will advance our 
knowledge on how to design prompts that help students 
build on their ideas. 

Every distinct learning path will require tailored prompts 
to promote discovering scientific models, distinguishing 
ideas, integrating knowledge, and using strategies to 
sustain links. Studies show that students are more likely to 
add new ideas or replace ideas instead of  linking new ideas 
to their repertoire of  ideas.[43] This approach may lead to 
fragmented ideas as we observed in Cluster 1 and Cluster 
2 of  the revisit and critique conditions. Determining 
distinct learning paths may allow us to design future 
curriculums that provide guidance to build on students’ 
ideas in each learning path and help students to construct 
their learning path by evaluating their competing ideas 
and refining their repertoire of  ideas.

Implications for Teachers
The implications of  this study extend to teaching and 
designing inquiry-based curricula. In particular, the 
findings highlight the importance of  promoting effective 
revising and knowledge integration in science education.

The results suggest that students may struggle with 
integrating new ideas into their existing understanding, 

particularly when revising their responses at a surface-
level or when lacking normative ideas to build upon. To 
address these challenges, teachers may need to provide 
prompts and pivotal questions to guide students toward 
effective revising and knowledge integration. The study 
also emphasizes the importance of  distinguishing and 
sustaining links between concepts and contexts in 
science learning. Teachers may need to help students 
distinguish among their diverse ideas and determine the 
most constructive ones for developing an integrated 
understanding. Additionally, prompts may be needed to 
sustain links between concepts and contexts, particularly 
when students have developed partial or valid links but 
struggle to connect them across different contexts.

Overall, the study highlights the importance of  
supporting students in distinguishing among their own 
diverse ideas and determining the ones they can build 
on. Teachers may need to use different instructions for 
supporting the process of  distinguishing and reconciling 
conflicting ideas, depending on the distinct repertoire of  
ideas in each student’s learning path.

CONCLUSION AND SCHOLARLY 
SIGNIFICANCE 

This study focuses on analyzing student learning paths 
and progress in knowledge integration, a key aspect 
of  STEM education. We used actual data, including 
knowledge integration scores, to examine the ways 
in which students integrate new ideas with existing 
knowledge. To compare students’ sequences of  ideas, 
we used Levenshtein edit distance. We investigated 
the patterns of  students’ learning paths by clustering 
students based on their edit distances. To determine the 
number of  clusters, we used the silhouette coefficient 
measuring technique. We clustered students’ learning 
paths using K-means clustering and determined the 
most representative learning path for each cluster using 
Kohonen’s generalized median string formula.[25] Other 
researchers have investigated sequential prosperities 
by examining individual sequences and calculating the 
probability of  transitioning from one event to another[44] 
or by using sequential pattern mining to find the most 
frequent sequences in a sample.[45] In this study, the 
combination of  methods we used for the sequence analysis 
allowed us to compare sequences based on distances and 
obtain an aggregate measure of  central tendency for a 
set of  sequences. Since the Levenshtein distance between 
two strings is the minimum number of  single-character 
edits (insertions, deletions, or substitutions) required to 
change one string into the other, it is the same as other 
approaches that make a series of  substitutions, deletions, 
or insertions. The unique approach here is that it measures 
differences between a string of  knowledge integration 
scores, establishing the minimum number of  insertions, 
deletions, or substitutions necessary to make one string 
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the same as another. Thus, the clusters are sets of  strings 
that are similar to each other in the sense that they 
require the fewest insertions, deletions, or substitutions 
to be identical to each other. Applying these methods 
enabled us to characterize how students’ repertoire of  
ideas changed and to identify distinct learning paths as 
students integrate their ideas. In this study, the major 
changes in students’ learning paths started to appear from 
the discovery step. Thus, in future research on simulation-
based discovery learning, where students need to make 
more discoveries, this method of  analysis will be useful to 
track multiple paths of  actions and knowledge integration.

The present study compared two instructional conditions, 
critique and revisit, and examined their impact on students’ 
scientific understanding and knowledge integration. 
The findings indicate that the majority of  students had 
difficulty integrating new ideas when reflecting on the 
question of  why siblings look similar but not exactly the 
same. However, the revisit condition, which involved 
revisiting questions that combine different contexts, 
was more effective in facilitating knowledge integration 
compared to the critique condition. These results suggest 
that exposing students to revisiting questions that 
combine different contexts can enhance their ability to 
integrate new scientific ideas into their existing knowledge 
structures. This study provides insights into effective 
instructional practices for promoting students’ knowledge 
integration in science education. Further research is 
needed to explore the long-term effects of  the revisit 
condition on students’ scientific understanding and how 
these effects may vary across different age groups and 
academic settings.

To answer our second question, “What distinct learning 
paths do students take as they study the web-based 
Genetic Inheritance unit in the critique and revisits 
conditions”, we examined the set of  learning paths that 
emerged for each of  the instructional conditions. Our 
approach expanded on prior work studying the trajectory 
of  knowledge integration[12] and identified distinct 
learning paths using clustering analysis. By characterizing 
the varied student trajectories, we were able to develop 
a qualitative description of  each path, which can help 
teachers understand the unique ways that students go 
about making sense of  the ideas they encounter during 
instruction.

Our analysis of  students’ knowledge integration 
trajectories revealed that students progressed at different 
rates and grappled with different ideas, with some 
gradually adding ideas to reach a coherent understanding 
while others reconfigured their understanding using a 
subset of  new ideas. Additionally, some students faced 
difficulties in differentiating between their various ideas 
and identifying the ones they could use to build upon 
and also found it challenging to maintain connections 

between concepts. The learning paths show when 
students’ ideas come together and when their links 
remain fragmented. Students who integrate some ideas 
but not others may benefit from prompts to sustain their 
links across different concepts and to add the ideas they 
have neglected. These findings highlight the importance 
of  providing support to students in the process of  
integrating new and prior ideas and using prompts to help 
them connect corresponding elements across contexts. 
In light of  these findings, we suggest that curriculum 
designers can benefit from identifying distinct learning 
paths and utilizing them to design activities that build 
upon the areas where students’ ideas come together. In 
promoting the knowledge integration framework within 
STEM education, this approach can support students in 
integrating new and prior ideas into coherent explanations 
of  scientific phenomena. For instance, in this study, we 
identified four learning paths of  isolated links, partial 
links, valid links, and integrated links, which allowed us 
to emphasize the need to provide support to students in 
the process of  distinguishing and reconciling conflicting 
ideas, and prompts that help them connect corresponding 
elements across contexts to sustain their knowledge 
integration.

Limitations 
Our study focuses on 6th-grade students’ learning paths 
toward the understanding of  Genetic Inheritance and 
might not generalize to other grade levels or science 
topics. We combined data from three teacher classrooms 
at two different schools. Our representative learning 
paths of  student clusters may change with the change 
of  individual questions, the use of  different instructional 
frameworks, or the change of  teachers, students, or 
schools.
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